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Summary. A method based on the cycle-type matrix algebra is devised to 
generate the character tables of generalized wreath products which are useful in 
describing the symmetry groups of non-rigid molecules, NMR groups, groups of 
non-rigid van der Waals complexes, the groups of space types in configuration 
interaction calculations, etc. This newly developed method is illustrated with 
examples. 
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1. Introduction 

It is now well-recognized that the symmetry groups of non-rigid molecules [ 1, 2], 
NMR groups [3], groups of weakly-bound van der Waals complexes [9], 
configuration symmetry groups [4, 5] for isomer enumeration and isomerization 
reactions [6-8], symmetry groups in configuration interaction calculations [10], 
symmetry groups of crystals exhibiting distortions [2] and the symmetry groups 
of many chemical graphs [11-13], can be expressed as generalized wreath 
products. Some groups related to the topic of chirality polynomials are also 
expressible as wreath products [14]. The order of these groups rises both 
factorially and exponentially and thus the computation of character tables for 
these groups could be difficult. For example, the symmetry group of the 
non-rigid benzene trimer contains 20 736 permutations. This simple example 
illustrates the computational complexity of the task of evaluating characters of 
wreath product groups and generalized wreath product groups. It is of interest to 
note that the related topological groups (automorphism groups) of graphs are 
also useful in several applications [16-18]. The generalized wreath product 
algebra is useful in the operator method formulation of NMR [19, 20]. For a 
review of this topic see [4]. 
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While rigorous techniques have been developed to compute the generalized 
character cycle indices (GCCI) of generalized wreath product groups [4, 19, 20], 
this is not the case for the computation of the actual character tables. Recently, 
Liu and the present author [22] have developed a computer code for efficient 
calculation of the character cycle indices. Such cycle indices are quite useful for 
computing nuclear spin statistics, enumeration of isomers, spin functions and in 
computing chirality polynomials. However, it is necessary to have the actual 
character tables for applications such as the prediction of allowed transitions, the 
classification of wave functions, and the determination of vibrational selection 
rules. The objective of the present paper is to develop a new cycle type matrix 
algebraic method for the generation of character tables of generalized wreath 
products. Section 2 outlines preliminaries pertaining to generalized wreath 
product groups. Section 3 describes the cycle type matrix algebra. Section 4 
shows how to use the matrix algebraic method to obtain the character table of 
a non-rigid tetraphenyl. 

2. Mathematical preliminaries pertaining to generalized wreath product groups 

We start with an illustration of the wreath product group using the hydrazine 
molecule within a part icles-in-a-box model [2]. Figure 1 shows the particles- 
i n - a -box  permutations in the non-rigid molecular group of hydrazine. Let the 
protons of the first nitrogen atom (A) be labeled 1 and 2 while the protons of the 
second nitrogen (B) be labeled 3 and 4. The permutations in the wreath product 
$2[$2] can be visualized using a part icles- in-a-box model as shown in Fig. 1. 
Let us associate boxes A and B with the nitrogen atoms A and B, respectively. 
Let the protons 1 and 2 be particles in the box A and the protons 3 and 4 be 
particles in the box B. Suppose G is a permutation groups of boxes, which is $2 
for hydrazine in Fig. 1, comprising permutations {(A)(B),(AB)}. Let H be the 

[ - ~  I~--~ (A)(B)(I)(2)(3)(4) ~ - ~  ~ ~  
B A A B 

I ~  [~---] (A)(B)(12)(3)(4) [ ~ ~  I ' ~  
A B B A 

[ - - ~  I~I~I1 (A)(B)(I)(2)(34) I ~ I ]  [ ~  -I ] A B 

B A 

A B 
(A)(B)(12)(34) 

Fig. 1. Particles-in-a-box model of hydrazine 

B A 

(AB)(13)(24) 

(AB) (1324) 

(AB) (1423) 

(AB) (14) (23) 
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group acting on particles within the various boxes. In this example, H is the 
group of  the permutations of  the particles in the boxes, namely, the $2 group. 
Then the wreath product of  G with H, denoted by G[H] contains permutations 
of  both boxes, particles and the permutations of  particles induced by the 
permutations of  boxes. As seen from Fig. 1, a permutation of  boxes in turn 
induces a permutation of  the particles. A simple permutation of  boxes A and B 
in Fig. 1, without permuting the particles individually in each box, induces an 
overall permutation of  (AB)(13)(24). Given the group G of boxes and the group 
H of particles in each box, the overall group of  all particles in all boxes is the 
wreath product of  G with H, denoted G[H]. If there are n boxes, the number of  
elements in this group can be seen to be [GllHI", where [G[ is the number of  
elements in the group G and Inl is the number of  elements in the group H. 
Figure 1 illustrates the possible permutations in the wreath product $2[$2]. The 
non-rigid molecular group of  biphenyl is also isomorphic with S2[Sz]. The 
wreath product $2[$3], which is the N M R  group of  ethane and the group of  the 
ammonia dimer, consists of 62. 2 = 72 permutations, while $2[$2] contains eight 
permutations. For mathematical details on wreath products see [23]. 

A formal definition of  the wreath product group can be given. Suppose 
f2 = {1, 2 , . . . ,  n} is a set of  elements (boxes). Let G be a permutation group 
acting on t2. Let H be another permutation group acting on particles within 
boxes. The set {(g; 7[) In: a -+/-I, g ~ G} spans the wreath product group G[H]. 
The product of  two elements (g; 7[) and (g'; 7[') is defined as [23] 

(g; 7[)(g'; 7[') = (gg'; 7[rt'g), (1) 

where 

7['g(i) = 7[ ' (g- ' i ) ,  V i e  f2. (2) 

The product of  two maps n, rt': 12 ~ H is defined as 

art'(i) = 7[(i)rV(i), Vi ~ t2. (3) 

The element (e; e') is the identity where e e G, and e'  is the identity map defined 
by 

e'(i) = 1H, Vie  O, (4) 

where 1H is the identity element for the group H. The inverse of  (g; 7[) is 
(g - l ;  %_,) .  

T h e  generalization of  the wreath product G[H] to a generalized wreath 
product group G[H~, H 2 . . . . .  H,]  [ 1, 2, 4] becomes necessary when the number 
of  particles in different boxes is not the same. Linear tetraphenyl (Fig. 2) is an 
example: rotation around the bond connecting the phenyl rings is freely allowed, 
and the terminal rings are not equivalent to the non-terminal rings, so, general- 
ization of  the wreath product group to the generalized wreath product group 
becomes necesssary. In this case, the set f2 = {1, 2, 3, 4} of  the boxes is parti- 
tioned into two sets Y~ = {1, 4} and Y2 = {2, 3} so that all the boxes in a given 
set I1,- are equivalent. In this setup a mathematical definition of  generalized 
wreath product is as follows: 

Suppose a set ~2 = {1, 2 . . . . .  n} is partitioned into mutually disjoint sets 
Y~, Y2 . . . . .  Yt- Let G be a permutation group acting on f2 such that all its cycles 
are contained within the same Yi sets. Let H~, 1-12 . . . .  , Ht be t permutation 
groups and let 7[; be a map from Yi to H i (i = 1, 2 . . . . .  t). The set 

{(g; 711, 7[2 . . . .  ' 7[,)Ig e G, 7[i: Yi + H i }  (5) 
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Fig. 2. A non-rigid tetraphenyl molecule. 
The permutation subgroup of the symmetry 
group of this molecule is the generalized 
wreath product $2[$2, $2]. For its 
conjugacy classes and character tables see 
Tables 2 and 3 

is called the generalized wreath product group. Each element in the generalized 
wreath product group can also be represented by an ordered (t + 1)-tuple of  the 
form 

(g; hu,  h12, • • •, hl,~,; h21, h22 . . . . .  h~2;  • • • ; htl, ht2, • • •, him,), 

where mi = I Yil, (6) 

g e G, and h;j ~ Hi. It can be seen that the generalized wreath product set forms 
a group and it is denoted G[H1, H 2 , . . . ,  Ht]. For the example in Fig. 2, the 
generalized wreath product group is simply $2[$2,$2], which contains 
2 . 2 2 .  22= 32 elements. The group G in this case is $2 and contains the 
permutations {(1)(2)(3)(4), (14)(23)}. T; is simply the set of  particles in each 
box. 

A permutation representation of  the generalized wreath product group 
G [ H 1 , H 2 , . . . , H t ] ,  with G acting on f2 = { 1 , 2 , . . . , n }  and H i acting on 
Ti = {1, 2 . . . . .  ti}, can be obtained by dividing the set A = (1, 2 . . . .  , nl-I~=~ ti} 
into disjoint subsets AH, A12, • • •, A1ml, A21, A22, • • •, A2,,2 . . . . .  Atl, 
At2 . . . . .  Arm t. Subsequently, for a given i, the direct product of  the group H U 
acting on A# is obtained by varying j from 1 to mi. In this setup, the 
permutational representation of  the generalized wreath product is obtained as 

G[HI, H2 . . . . .  Ht] = [(Hu x HI2 x " "  x Him1) 

x (H21 x H22 x " "  x H2m2) 

x " " x (Htl x " " x Him,) ] • G', (7) 

where 

G'  = {(g; el, e2 . . . . .  et) [g ~ G, e i ( j )  = IHi (the identity of the group H i ) , j  E Yi} 

(8) 
and H U is a copy of the group H i . The product [(Hi1 x H12 x - . .  x H 1_ ) 
x (H21 x H22 x - . .  x H2m~) x " "  x (Htl x Hi2 x " "  x H,m,)], denoted by nT~'~ 

H~'~ x • • • x H t  ~, is called the basis group of  G[H l , HE, • . . ,  Ht]. 
Although the representation theory of  generalized wreath products is de- 

scribed in adequate details in [1], the most important points are given below. 
These are required for the further development of  cycle type matrix algebra. 

Let the irreducible representation of H~" x H~ '2 x . - - x  HT" be denoted 
• * * m *  " F = F T  ~ # F ~  ' 2#  " '"  # F ~ ' ,  where Fi~ Is the outer tensor product 

Fil # F,2 # F,3 # • i " # Fire, ; F~ is an irreducible representation of  Hi. The group 
G acts on { # iF-~' }. Two irreducible representations # iFT" and # iF'7" in F, the 
set of  all # iF7 '~ , are said to be equivalent if there exists a g e G, such that 

g (  # i F ' ~ t  ) = # iF~  " t .  ( 9 )  

Two representations that are equivalent belong to the same class. Thus, G 
divides F into equivalence classes. The inertia group of each class of  F consists 
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of the set of permutations satisfying the following property: 

G,-[H1,H2,...,H,] = { ( g ; ~ , , n 2  . . . .  ,n,)lr(g';n,,n2,...,nt)~r}, (10) 

where F = # iF~  7. A permutation representation of the inertia group 
Gr[HI ,  HE . . . .  , Ht] is (HT" x H'~z x • " x H 7  ¢)  • G'r where G~ is known as the 
inertia factor. The irreducible representations of G[H I , HE, • • •, Ht] are given by 
the representations induced by F ®F~ (F~ is anirreducible representation of the 
inertia factor group Gr). Symbolically, ( # i  Fml ®F~) 1" G(H1,  HE . . . . .  H i )  are 
the irreducible representations of G[H~, H 2 . . . .  , Hi]. 

For a given irreducible representation, # ~ F  m, , its inertia factor group G~, 
i.e., the quotient group of the inertia group G'r[H1,112 . . . . .  Ht], can be seen to 
be a subgroup of G. 

The generalized character cycle index (GCCI) of an irreducible representa- 
tion F of a group G whose character is Z is given by [15, 19-21] 

1 ~, x(g)sb!sb 2 b. P ~ = - ~  , " " " S.  , (11) 

where the sum is over all the elements g of the group G, IGI is the number of 
elements in G, and sbl~s~ 2" " " S~" is a cycle representation of a permutation g e G 
if it generates b I cycles of length 1, b 2 cycles of length 2 . . .  and b, cycles of 
length n. 

If G~ is the inertia group corresponding to the irreducible representation F, 
then G~ can be seen to divide the set of t2 into disjoint sets Y~, Y2 . . . . .  Y~. Note 
that this partitioning is identical to Y~, Y2 . . . . .  Yt when G~ = G. This is 
accomplished by taking the permutations of G~ and applying them to f2. The 
cycle index of Gr, which corresponds to the representation F~- with character Z 
of Gr, is defined with two-index dummy variable s o. as 

1 
P~b = [P~b[ gEa~ z (g )  I-Ii I-I s~o (12) 

where co(g ) denotes the number of j-cycles of g in the set Y~, and x(g) is the 
character corresponding to the element g in the irreducible representation F~ of 
G~. Let Zi(S l ,  s2 . . . .  ) denote the GCCI of the irreducible representation made 
of # f m T .  Define Z,j as 

Z o = Zi(Sk ~Sk j ) ,  (13) 

where the symbol Sk--"Ski stands for the operation of replacing every cycle of 
length k by a cycle of length k j  (k j  denotes the product of k and j). 

The generalized character cycle index of the irreducible representation 
# ~ F  mi ® F ' r  ~ G[HI,  H 2 . . . . .  Hn] is given by [15. 19, 20] 

P~i.(sij ~ Zo) .  (14) 

Thus, the generalized character cycle index of the irreducible representation is 
obtained by replacing every s o in P~b by the cycle index Zo.. 

The above result can be illustrated by the example of the non-rigid te- 
traphenyl molecule in Fig. 2. The set O = {1, 2, 3, 4}, where the elements 1 and 
4 are terminal rings and 2 and 3 are the non-terminal rings, is partitioned into 
sets Y1 = {1, 4} and Y2 = {2, 3} for the case where the inertia factor is the whole 
group G. Consider the irreducible representation [ 12] # [2] # [2] # [ 12] ® [ 12] ' as 
an example. The inertia factor group for [12 ] #[2] #[2] #[12 ] is the whole group 
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S 2. The GCCI of the [12] ' representation of S 2 is given by 

p ~ ] ,  _ 1 r . 2  ~2 
- -  ~l.a 11o21 - -  S12822 ]. (15) 

The indices Zl1, Z21, Z12 and Z22 for the protons of tetraphenyl are given by 

Z11 1 5 -~- ~[s  1 - s182] ,  ( 1 6 )  

Z l  2 1 5 = ~[s2 - s2s]], (17) 

Z21 1 4 2 = ~[Sl + s2], (18) 

Z 2 2 ~  1 4 2 ~[s2 + s4]. (19) 

Thus for F = [12] #[2] #[2] #[12] ® [12] ' 

= ( 2 o )  

1 1 5 ~[{~(S 1 2 2 1  4 • 2 1 , 2 1  4 
= - -  2('~2 - -  $2S4) 2($2 "F S2)] ( 2 1 )  

- -  1 [~18 ")~14~,2 _10.4 - 1 4 . 2  - 1 0 . 4  
- -  3-2[°  1 - -  Z ' ° l  02 "~- ~'1 ~ 2  "dr" 2J1 ~2 - 4 a 1  ,~2 

..~ 6 6 . 10 -4  2S6S 6 2 S 2SlS2 + al "~'2 - +SlS2 4s29+4sEs44]. (22) 

Consequently, the GCCI of the irreducible representation 
[12] #[2] #[2] #[12] ®[12] ' of the $2[$2, $2] group is simply generated from the 
GCCIs of $2. 

Although the GCCIs obtained above are useful in several chemical physics 
applications such as NMR, nuclear spin statistics, isomer enumeration, molecu- 
lar spectroscopy, etc., they do not always generate the complete character. This 
is because two different conjugacy classes can have the same cycle representation. 
A trivial example is the rotational subgroup C3 for which the c3 and c ] 
operations have the same cycle representations s3 but do not belong to the same 
conjugacy class. Thus in general one needs more powerful algebraic methods to 
generate characters. 

3. The cycle type matrix algebra for character generators 

The cycle type matrix algebraic method described below is useful for computing 
the characters of the generalized wreath product group G[HI, H 2 , . . . ,  Hn], if G 
happens to be isomorphic with Sn containing n! permutations of n boxes. For the 
special case of the wreath product S,[H], a cycle type matrix [23] can be 
obtained that has one-to-one correspondence with a conjugacy class of S,[H]. 
Let g e G generate al cycles of length 1, a2 cycles of length 2, etc. Equivalently, 
the cycle type of g ~ G, Tg is (al, a2 . . . . .  an). Suppose Cl, c2 . . . . .  cs are the 
conjugacy classes of the group H. Suppose a~k of these cycle products belong to 
% then a simple s x n matrix, which is called the cycle type matrix for an 
element (g; 7r) of the wreath product, is shown below: 

T(g;Tr)=aik ( l ~ < i ~ s )  ( l ~ k ~ < n ) .  (23) 

We now illustrate the above formalism with the example of the $3[$3] group. 
Consider the conjugacy class {(1)(2)(3); (123), (123), (123) } of this group. This 
permutation is isomorphic with (123)(456)(789). The cycle type matrix for this 
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permutation is shown below: 

0 ' 
0 

A simple interpretation of the cycle type matrix is 

(24) 

SlS2 s2s4 s3s6] (25) 

83 S6 S 9 _1 

The first column represents the cycle types generated in the group H if g e G is 
the identity, the second column represents the possible cycle types generated by 
replacing every s ~ i s ~ 2 . . ,  s~k in the first column by s ~ s b 4 2 . . ,  s~ , ,  while the third 
column represents the possible cycle types obtained by replacing every 
Sbl ~ S~ 2 . . . s bk by s~l s~ ~ . . . Sbf,. Since in the element 
{(1)(2)(3);(123), (123), (123)}, g is the identity, only the first column of the 
matrix can contain non-zero elements• Since all three H group elements have the 
same cycle types corresponding to the third row and first column, a31 is 3 and the 
rest of the elements are zero. Next consider {(12)(3); (123), 1, 1} ~ $3[$3]. The 
element g has a cycle type s~s2; thus, both first and second columns will contain 
non-zero elements. Since the first element in H belongs to the third conjugacy 
class while the other two belong to the first class, the cycle type matrix is 

The resulting cycle type of s~s6 can be easily verified as the correct cycle type for 
b. is obtained then the above element. If in general a cycle type s ~ s ~  2.  • • sn 

~ k b k  = m ,  (27) 
k = l  

where m = [y[l~l. 
The above example illustrates that, in terms of cycle type matrix algebra, the 

generalized wreath product substitution Sk  ~ Ski corresponds to moving the first 
column to the j th column of the matrix type• This is the key underlying principle 
we use to generate the characters. That is, although in general there is no 
one-to-one correspondence between the cycle type Sbl~S~ 2 . . .  b, and the con- Sn 
jugacy class of S , [ H ] ,  there is a one-to-one correspondence between the cycle 
type matrices and the conjugacy classes of S , [ H ] .  For example, the element 
{(123); 1, 1, 1} and {1;(123), (123), (123)} belong to different type conjugacy 
classes, but their cycle types are both s33. However, the cycle type matrices of the 
former and latter elements differ and are shown below: 

0 , 0 . ( 2 8 )  

0 0 

Consequently, the cycle type matrix is a more powerful discriminator than the 
simple scalar cycle type s~ ls~  2 . .  b. 

• S n  • 
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The generalized wreath product substitution S~ ~ Z 0 described in Sect. 2 can 
be equivalently carried out using the cycle type matrices rather than using the 
cycle index polynomials. This provides a powerful general character generator 
for the groups S,,[H1, H 2 , . . . ,  H,,]. This requires replacing the ordinary cycle 
index polynomials by a combination of cycle type matrices of H~, H2 . . . . .  H,,  
and subsequently replacing every s 0 in p r  by the appropriate matrix combination 
of cycle type matrices T(M)ij. In symbols, suppose p r  is the GCCI of an 
irreducible representation F in G. Let T(M)u be the appropriate combination of 
cycle type matrices obtained using the procedure described below. Then a new 
cycle type matrix of G[HI, H2 . . . . .  H,,] corresponding to the overall representa- 
tion F* of G[HI, 1-12 . . . . .  11,] is obtained as 

T[G(HI, 1-12 . . . . .  Hn)]F* = p r  (s o ~ T(M)u ). (29) 

Let us illustrate the above procedure with a simple example. Consider the 
representation F~3 = [12] #[12] #[12] #[12] ®[2]' of the tetraphenyl in Fig. 2. 
The inertia factor group is the whole group $2 for this representation. The cycle 
index P ~  is given by 

• 2 2 P[~[  = ½ [S I I  $21 + $12S221" (30) 

The matrix types T(M)o are given by 
1 0 0 

1 1 0 

(Note that in the above expression the 0 and ~ signs do not mean simple 
matrix subtraction or addition.) As we shall see below, only the coefficients are 
treated as scalars. The matrix elements are carefully manipulated in accordance 
with cycle types and no additions or subtractions of matrices are carried out in 
the ordinary sense. Hence the substitution S o ~ T(M)~j yields 

+4C0 '0]0[~ 
--~ {[=0 00][=0 

o=[=o °o][', 
• =E'o °o]['o 

~410o 

Oo])~Co Oo]~[o~ Oo])~ 
o])([o ° ~o]~[Oo o])} 

Oo]~(~ Oo][~ Oo]~[o~ Ooi~o ~] 
Oo]~[o ~ Oo][, l :].~[l ° Oo][O Oo][; Oo][O ' ;] 
Oo][O, oo][o, Oo].[~o oo][o~ ;]~=[: :][o~ Oo] 

Oo]o4[Oo 'o][Oo ;] 
~][o ° ,o]~4[o ° ~][o ° o]~4EO ° o io ° o]}. ~,  
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In simplifying the above expression, the fact that two cycle type matrices can 
be combined into only one matrix if they correspond to equivalent members of 
the same Y set is used. For the example in Fig. 2, the first and fourth rings are 
equivalent, and second and third rings are equivalent. Thus the matrices corre- 
sponding to the equivalent rings can be combined if they are the same. Conse- 
quently, 

is not equivalent to 

but 

and 

(i) [~ 00]2=[2 0 00], 

(ii) [10 00][~ 00][10 00][01 00] 

[lo :] 

[lo OoiO  Oo][lo Oo][O  00] 

°o][lo :] 
are equivalent. This is because the group G = $2 permutes the terminal phenyl 
rings simultaneously with the non-terminal phenyl rings. The coefficients in the 
above expression generate the character. The various cycle type matrices are the 
conjugacy classes of the generalized wreath product group $2[$2, $2]. Conse- 
quently, the cycle type matrix algebra simultaneously generates the conjugacy 
classes and the characters. 

4. Example of a non-rigid tetraphenyi 

Consider the non-rigid tetraphenyl in Fig. 2 as an example. We shall use this 
example to illustrate the various techniques described above. The group G is $2 
while the total non-rigid permutation group is $2[$2, $2]. (Note that the permu- 
tation-inversion group [24] is the direct product of the permutation and inversion 
group for this case.) The irreducible representations of basis groups, the inertia 
factor groups and the final irreducible representations are shown in Table 1. The 
conjugacy classes and the order of various conjugacy classes are shown in Table 
2. The actual character table is obtained through repeated s o. ~ T(M)o. substitu- 
tions for each representation described and illustrated in Sect. 3. The character 
table is shown in Table 3. 

As an additional illustration of the su--* T (M)a  substitution we consider 
another example. Consider F4 = [2] #[2] #[2] #[12] T $2[$2, $2]. The inertia fac- 
tor is the identify group for this case. Hence 

p r  _ t.(l)o(2) c,(1),,(2) (34) 
- - O l l a l l a 2 1 0 2 1 .  
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Table 1. Irreducible representations of $2[$2, $2] , the generalized wreath product group of 
tetraphenyl in Fig. 1 

Representation of Inertia 
the basis group, factor 
n l x H 2 x H 3 x n 4  

Total representation Dimension 

[2]#[2]#[2]#[2] s [  

[2]#[2]#[2]#[12 ] E' 

[2]#[2]#[12]#[2] E' 

[2]#[2]#[12]#[12 ] E' 

[2]#[12]#[2]#[12 ] E' 

[21#[12]#[12]#[2] S.~ 

[2]#[12] #[121#[12 ] E' 

[12]#[2] #[2] #[ I  2 ] Si 

[121#[21#[121#[121 E" 

[12]#[12]#[12]#[12 ] S'2 

r ,  = [2] #[2] #[2] #[2] ®[2]' 1 
F 2 = [2] #[2] #[2] #[2] ®[12] ' 1 
F 3 = [2] #[2] #[2] # [12] ® [1]' 2 

T s2[s2, s2] 
r4 = [2] #[2] #[121 #[2] ® [1] ' 2 

t s2[s2, s2] 
F, = [2] # [21 # [ 121[ 12] ® [ 1]' 2 

T s2[s2, s21 
/6=[2]#[12]#[2]#[12]®[1] '  2 

T s2[s2, s2] 
r7 = [2] #[12] #[12] #[2] ®[2] ' 1 
F~ = [2] # [ 12] #[  12] # [2] ® [ 12]" 1 

r9 = [21 #[12] #[121 #[121 ®[11" 2 

T s2[s2, s21 
F,o = [12] #[2] #[2] #[12] ®[2] ' 1 
r n  = [12] #[2] #[2] #[12] ®[12] ' 1 

r12 = [12] #[2] #[12] #[12] ®[1] ' 2 
T s2[s2, s2] 

El3 = [12] #[12] #[12] #[  12] ® [2]' 1 
r,4 = [121 #[12] #[121 #[121 ®[121 ' 1 

Table 2. Conjugacy classes of $2[$2, $2], the generalized wreath product group of 
tetraphenyl and their orders 

Class Order Class Order 

[ : ] [ : ]  ' [ : ] [ : ]  ' 
[:Oo][:] [',Oo][:] 
[ : ] [ : ]  , [ : ] [ : ]  , 

, 4 
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o 

o 

I I 

I ~ I 

I I 

I I 

I I 

I , , I  

I 

I 

I 

I I 

I , I 

I I 

I 

I • 

I I  J 

I I  • 

0 0 

I I I I 

I I I I 

I I I I 

I I  I I 

I I I  I I  

I I I  I 

I I I  I I  

I I I  I I  

I I I  I I  

I l l  I I  

I I I  I 

I I I I I  
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Because the inertia group is the identity group, distinction of rings within each 
Y set is necessary. This is done using the superfixes. 

Hence, 

~,-,,;,--~{['o Oo]~[o 3 ,", 
2 1 1 0 T(M)~'=~{[0 0]G[~ :]}, (36) 

~-,~;,--~{['o Oo]~[o Oo]}, 

~4[: :][~ ;]G2[X 

Oo]~[o, Oo]}] 
°o]E~ Oo] 

Oo][~ Oo] 
°o][~ °o]}. 

(37) 

(38) 

(39) 

Thus the coefficients 2, 4, 2 - 2 ,  - 4 ,  - 2  are simply the products of the number 
of elements in the corresponding conjugacy classes and the character associated 
with an element in the respective classes (see Table 3). 

5. Conclusion 

In this paper we have developed a powerful cycle type matrix algebra to generate 
the characters of generalized wreath product groups. It has been shown that the 
character table of the generalized wreath product G[H1,1-12 . . . . .  H,,] can be 
obtained using the generalized character cycle indices of G, and the cycle type 
matrices of 1-11,1-12 . . . . .  H, , ,  through powerful cycle type matrix substitutions in 
the GCCI of the group G. A non-rigid tetraphenyl molecule has been used as an 
example to illustrate our method. The character table of the non-rigid te- 
traphenyl has been obtained for the first time. 
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